A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation.
نویسندگان
چکیده
Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.
منابع مشابه
Palmitoylation of serotonin receptors.
The covalent attachment of palmitic acid to one or more cysteine residues (S-palmitoylation) is a widespread modification of signalling proteins. With the finding that palmitoylation is a dynamic process, it is now widely accepted that repeated cycles of palmitoylation/depalmitoylation could be involved in the regulation of multiple signalling processes. Palmitoylation also represents a common ...
متن کاملGi/o signaling and the palmitoyltransferase DHHC2 regulate palmitate cycling and shuttling of RGS7 family-binding protein.
R7BP (RGS7 family-binding protein) has been proposed to function in neurons as a palmitoylation-regulated protein that shuttles heterodimeric, G(i/o)α-specific GTPase-activating protein (GAP) complexes composed of Gβ5 and RGS7 (R7) isoforms between the plasma membrane and nucleus. To test this hypothesis we studied R7BP palmitoylation and localization in neuronal cells. We report that R7BP unde...
متن کاملChanges in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine
Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...
متن کاملPalmitoylation regulates plasma membrane–nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family
The RGS7 (R7) family of RGS proteins bound to the divergent Gbeta subunit Gbeta5 is a crucial regulator of G protein-coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7-Gbeta5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gbeta5, and R7 isoforms in brai...
متن کاملPalmitoylation and depalmitoylation dynamics at a glance.
Protein palmitoylation, the thioester linkage of fatty acyl moieties (typically, saturated 16C palmitate) to cysteine, is a lipid modification that serves both to tether proteins to membranes and to direct their localization to membrane microdomains. Unlike the two other types of lipid modification that also tether proteins to cytosolic membrane surfaces, namely prenylation and myristoylation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 289 9 شماره
صفحات -
تاریخ انتشار 2014